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ABSTRACT 

The method is hased on conformal mapping of the boundary of a closed two- 
dimensional region on the perimeter of a rectangular polygon in which is inscribed 
an orthogonal rectilinear grid. Features of the method and the associated numerical 
analysis are described. A numerical scheme for interpolating lines between the orthogonal 
curvilinear mesh lines in order to match lines to specified points on the boundary is 
presented. Examples of orthogonal meshes inscribed in various geometrical figures are 
included. 

This paper describes a numerical method for inscribing an orthogonal curvilinear 
mesh (OCM) in a closed, simply connected, nonself-overlapping two-dimensional 
region 5%. Essentially, the method consists of finding the function which conformally 
maps the boundary of the given regionL@(Fig. 1) onto the boundary of a rectangular 
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Fro. 1. The boundary of the region I is mapped conformally onto the boundary of a 

rectangular polygon B. The image of an orthogonal rectihnear grid in B is an orthogonal 
curvilinear mesh inscribed in 9. 

r Work performed under the auspices of the U.S. Atomic Energy Commission. 
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polygon 9’ (i.e., a polygon all of whose exterior angles are &n/2) and then using 
the mapping function so determined to find the image of an orthogonal rectilinear 
grid inscribed in the rectangular polygon. The N arbitrarily selected points of the 
boundary of 9 can be made to correspond to the N corners of the rectangular 
polygon. An interpolation scheme for fairing curves between the lines of the 
OCM so generated in order to match lines to selected points along portions of the 
boundary of the region 9 is also described. 

The conformal mapping is done in three steps: The region 9 is mapped into 
the unit circle I w I -5 1 by the transformation 

w(z) xz p.y (1) 

where z = x + iy, and I’(z, zO) = complex Green’s function [ I] for the region 53. 
The transformation takes the point z0 into the center of the unit circle. The unit 
circle is mapped into the rectangular polygon 9 by the conformal transformations 

w(z’) = g, 

where z’ is real for I w I = I, and 

x + iY = A ,: fj (( - Xi)*'/" cg 

(2) 

(Schwarz-Christoffel transformation). Zj = image in real axis (lm z’ = 0) 
ofjth corner point. 

The complex Green’s function for the region 9 has the form 

qz, 2”) = log@ - zo) + g(z) + i&), 

where the logarithm is the potential of a unit source (“line charge”) at an interior 
point zO, and g + ih is an analytic function in 9 determined by the requirement 
that 

Re r(z, z,,) = 0, z E c, 

where C is the boundary of R; i.e., 

g(z) = - 1% I z - zo I, z E c. 

Introducing a single-layer source density distribution o(LJ on C for the potential 
g(z), the preceding equation becomes a singular integral equation for the deter- 
mination of ~(5) [2]: 

-w z - zo I = 1, logl z - 5 I 4014 I, (z E C). (4) 
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Adding the imaginary part the nonsingular part of the complex Green’s function 
is obtained: 

g(z) + W = j log(z - 5) 4314 I, ZEW 
C 

NUMERICAL ANALYSIS 

The singular integral equation (4) for the source density u is solved numerically 
by the method of Symm [2], in which the integral is replaced by a numerical 
quadrature (Simpson’s ) - rule) so that the integral equation reduces to an 
IV,, x No linear system, where N,, is the number of Simpson integration intervals 
around the boundary of 9. Once the “cornerP have been chosen, the overall 
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FIG. 2. Map in unit circle of an elongated parallelogram (Fig. 6). The comers of the paral- 
lelogram correspond to boundary points numbers 1, 23, 70, 92, where point 1 is the lower 
left-hand comer. 

a A “comer” in W is the image of a comer of 9’; “side” refers to the (curved) portion of the 
boundary of W between two “comers.” 
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mapping is independent of the choice of 2,. Best results are obtained if the image 
in .9 of the point (1,O) of the unit circle-corresponding to x’ -+ co in (3~is 
chosen to lie on one of the longer “sides” (in 9) about midway between two 
“corners.“s The standard linear system solver in use at Los Alamos, which uses 
Gauss elimination with nonmaximal pivoting and accumulation of inner products 
in double precision, [3] was found to give satisfactory results. 

The map in the unit circle of the boundary of an elongated region 9 charac- 
teristically shows nearly flat portions corresponding to the portions of the boundary 
of W farthest removed from z0 (e.g., Fig. 2). The effect of numerical error of the 
mapping thus tends to be magnified for such portions of the boundary, and has the 
practical effect of limiting the applicability of the method to regions not more than 
about twice as long as broad. (However, elongated regions can be subdivided into 
less elongated subregions: See example below.) Because of this effect, the point z0 
should be centrally located in 9. 

The values of 5 , the images on the real axis (Im z’ = 0) of the “corners,” 
are determined from Eqs. (1) and (2). The j$+’ in (3) is approximated by NI 
Simpson intervals? The ratio of real and imagiiary parts of the constant A in (3) 
is determined so as to bring the sides of the image (in X, Y space) of the boundary 
of W parallel to the coordinate axes. Each side of the rotated image is divided into 
a number of equal intervals 4X or d Y. The boundary nodal points so determined 
are mapped onto the boundary of 99 by use of the mapping functions (2) and 
(3) and linear interpolation in the table of arg w (central angle in unit circle) vs 
boundary point sequence number, giving a set of image points li = xi + iyi on 
the boundary of 9. The partial S/C integrals J-z::-, are approximated by Simpsoc 

* The phases of the logarithms were determined by requiring that 

--?T < arg(rj+, - z~+~) - arg(zi+l - zi) < 77 
and 

-77 d argt~j+~ - zi+)) - arg(zj+I - zi) < 77 (i #i), 
and 

0 < arg(Zj+~ - zj+.J - arg(zj+l - zj) < 2n. 

l The singularity in the integrand of the S/C integral (3) when x’ = 4( and the corresponding 
exponent is - 4 is removed by rewriting the integral as [l] 

I :‘cs - %)-‘I* [n’ (6 - .$)*1/t - K] d[ - 2jj3p”, 
j#i 

K = n’ (n‘ - fj)iV. 
I#5 
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quadrature with IV, intervals, where N, depends on DXP = / xi-, - xie2 1 
(Table I). The value of xi’ is found by a Newton iteration using the value of xi-, 

TABLE I 

DXP -’ 0.1 2 
0.1 < DXP / 0.4 6 
0.4 < DXP < I.0 24 
I.0 < DXP < 2.0 50 
2.0 < DXP loo 

as a guess, except when xi-$ is the image of a corner. In the latter case an approxi- 
mate analytical solution, valid near a corner, is used to obtain a guess for xi’: 

XGES = xj + (1 - k,)(AX + id Y) ‘l/l--lit 
A JJk,j (Xj - .Fm)-kT” I ’ 

where kj = &+ and either AX or AY is 0. 
The images of the interior mesh points are found by numerical solution of 

Laplace equations5 
xxx + XYY = 0, 

Yxx + YYY = 0, 

with the boundary points &I’,, YJ specified, using the simple five-point difference 
scheme and the point-successive over-relaxation method. In cases where 9’ has 
more than four corners, so that there may be more than one value each of AX, A Y 
(e.g., Fig. l), the second derivative at a transition line AX+ - AX- is approximated 
by 

M 2 AX-+(X, + Ax+) - (AX + Ax+) +@‘I) + Ax+Wx - Ax-) + o(Ax) 
Ax-AX+(AX+ + Ax-) , 

for example. The value of the S.O.R. parameter h corresponding to a circumscribing 
rectangle is used, i.e., 

P/2 = ; ;cos ($) + cos (*)I. 

5 The images of the interior points could be found by direct evaluation of the mapping functions, 
of course. For each mesh point this would involve evaluating an integral around the boundary 
of 9. Note that the Laplace equations are solved on the rectangular polygon 9. 
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a 

FIG. 3. Effects of various choices of the parameter NO = number of Simpson integration 
intervals around boundary. (a) NO = 138, (b) NO = 68, (c) NO = 32. 

Figures 3a-3c show the effect of different choices of N,, , the number of Simpson 
integration intervals around the boundary of 9. The different choices NI = 100, 
NI = 20 made a difference of less than 0.15 % in the values of the real and 
imaginary parts of the S/C integral e@ for this example.s 

@ It can be shown that for a general region with curved boundary the truncation error in 
Symm’s method for approximating the Fredholm equation (4) is o(l AZ I). A more accurate 
method-@1 AZ [*)-has been developed by Dr. J. K. Hayes (unpublished AEC report LA-40@4, 
1968). When o’s computed by Hayes’ method are used in Symm’s quadrature for the /I function, 
a smooth monotonic map is obtained for an elongated (1 x 11) rectangle. 
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MATCHING LINES 

If OCM are separately inscribed in contiguous subregions, the mesh lines will 
generally not match along the common boundary (e.g., Fig. 8). However, lines can 
be interpolated’ between the lines of the original OCM in order to match lines 
along certain sides, i.e., to lines in adjacent subregions. Lines cannot be matched 
along opposite sides of a subregion. (In the L-shaped subregion of Fig. I, for 
example, lines could be matched along sides 3,4, 5, and 6, but not along sides 1 
and 2. The “L” could be subdivided into two rectangles, of course, enabling 
matching along sides 1 and 2 instead of 3,4, 5, 6). Figure 4 illustrates how a large 
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FIG. 4. Illustrates how a large region consisting of several subregions might be zoned with 
OCM: The region is imagined to be zoned by inscribing an OCM in Subregion A, continuing 
with B, C, and so on, matching lines as indicated by the directions of the arrows. 

region consisting of several subregions might be zoned with OCM: The region is 
imagined to be zoned by inscribing an OCM in Subregion A, continuing with B, 
C, and so on, matching lines as indicated by the directions of the arrows. In some 
cases it may be necessary to subdivide in order to match corners of the logical 
mesh on opposite sides of a subregion. 

It was found that a combination of first-order interpolation for the boundary 
points and third-order for the interior points gave satisfactory results (e.g., Figs. 

’ Clearly, any transformation of the form 2” = X’(X), Y’ = Y’(Y) which preserves orthogo- 
nality of the rectilinear mesh in 9’ gives rise to another OCM in 1. 
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FIG. 5. Interpolation in a single mesh unit. Points 14 belong to the original OCM. 

7-10).8 The third-order interpolation equations at an interior point (x,, , y,) 
(Fig. 5) are derived by expanding the coordinates of the four surrounding points 
of the original OCM and making use of the Cauchy-Riemann relations. The first 
interpolation equation is 

Xl = x0 - 6Xx,), - 6 YXY)O + a[(sx)z - (6 Y>‘l xxx)0 - sx 6 YYxx)o 
-&[f(SX)” - SX(S Y)“] xxxx)o - %I-(W s y + HS u31 Yxxdo * 

The SX and SY are determined by first-order interpolation along the subregion 
boundary. The system of eight third-order equations is solved for the coordinates 
of the interpolated interior point (x0, y,) by eliminating the unknown partial 
derivatives. 

FIG. 6. (Described in text.) 

* Better results might be obtained if third-order interpolation were used for the boundary 
points as well. ‘Ibis would necessitate solving a system of 8 nonlinear algebraic equations to 
find the interpolation parameters at each boundary point. 
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FIG. 7. (Described in text.) 

FIG. 8. (Described in text.) 
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FIG. 9. (Described in text.) 

FIG. 10. (Described in text.) 

EXAMPLES 

Figures 610 are an assortment of examples of application of the method.0 
In Fig. 7(b) the matching feature was used to make the lines equispaced along 
the bottom edge. The elongated region bounded by two circular arcs and rays 
(Fig. 8(c)) was subdivided into two parts along a ray; the lines were matched along 

a The figures were generated by an automatic plotter which approximates the curved mesh 
lines by straight-line segments. 
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the common boundary. In Fig. 9 lines were matched to the intersections with the 
ellipse of rays making equal angles at the center of the ellipse. In Fig. 10 an OCM 
corresponding to an L-shaped polygon B is inscribed in a figure with seven corners. 
The matching feature was used to space the lines so that a line goes to the odd 
corner. 

A typical example (Fig. 7(a)) required about 16 set of central-processor time on 
the CDC-6600 computer, of which -10 set was spent finding the complex Green’s 
function for the region B! (includes -4 set solving a 137 x 137 linear system) and 
-2 set was spent solving Laplace’s equations (50 iterations) for the interior mesh 
points. A time of 1.5 set was required for the interpolation of Fig. 7(b). 

CURVILINEAR COORDINATES 

The method described here was developed as a zoner/rezoner for Lagrangean 
hydrodynamic calculations in two space dimensions. However, it is anticipated 
that application of the method will not be limited to that type of problem. In some 
applications it will be convenient to regard the families of curves X = const., 
Y = const. as orthogonal curvilinear coord&ztes.10 The components of the metric 
of the corresponding coordinate transformation are 

g11 = (S)” + (-g)‘, g22 = (g)” + (&,“, 

a2 = IT21 = 0, 

where (x, JJ) are the Cartesian coordinates. The first-order partial derivatives at 
a point (x, JJ) are conveniently obtained correct to second order in AX, d Y by 
solution of a set of equations similar to the third-order interpolation equations. 
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